Pyrethrin and Pyrethroid Illnesses in the Pacific Northwest: A Five-Year Review

Mandy Green, MPH & Jaime Walters, MPH

Oregon Department of Human Services Office of Environmental Public Health Toxicology, Assessment & Tracking Services

- Types of pesticides used in U.S. have evolved over time
- Phase out of OP, IPM approaches result in increased use of pyrethrins and their synthetic derivatives pyrethroids

- Mechanism of action is on voltage-sensitive sodium channels. Insects acutely affected and experience nervous system overstimulation
- Mammals are less susceptible to effects
 - larger body size
 - poor dermal absorption
 - higher body temperatures

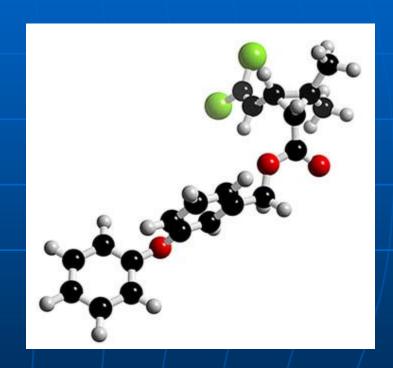
- Signs and symptoms described in literature:
 - Paresthesias
 - Contact dermatitis
 - Anorexia
 - Fatigue
 - Dizziness
 - Muscular fasciculations
 - Salivation

- Airway irritation
- Allergic reactions
- Coma
- Seizures
- Pulmonary edema
- Confusion
- Weakness
- Heart palpitations

- Case-based surveillance remains an important tool to monitor trends in adverse effects associated with these substances
- This analysis used pesticide surveillance data from OR and WA from 2001-2005 to describe the scope and nature of acute illnesses associated with currently used products

Methods

- Data collected from 2 pesticide illness surveillance systems-Washington
 Department of Health (DOH) and Oregon Public Health Division (OPHD)
- Similarities between the states
 - Mature systems in operation > 15 years
 - Collect data through mandatory reporting laws
 - Use NIOSH standardized variables
 - Have similar climates and pest pressures
 - Receive electronic reporting from PCC, individual referrals from other agencies, and accept self-reports

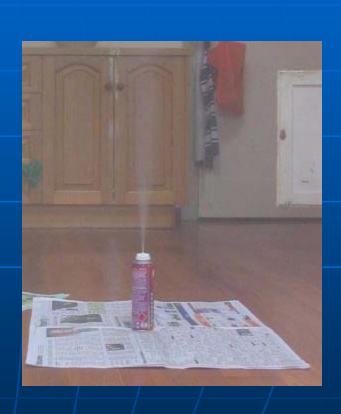

Methods

- Differences between the states
 - WA DOH identifies more cases from WC
 - OPHD receives majority of cases from PCC
- Illness severity assigned using standardized criteria
- Cases classified using standardized NIOSH definition. Only definite, probable or possible cases used for current analysis
 - Cases were included if they involved exposure to at least one pyrethrin/pyrethroid, regardless of any other chemicals involved in the incident

- Total of 407 cases between 2001-2005
 - 64 definite (16%)
 - 45 probable (11%)
 - 298 possible (73%)
- 26% of cases occupational in nature
- Slightly higher percentage of women (55%)
 - Incidence rate ratios for genders not significantly different

- Most cases were low severity (92%)
 - One death is captured in moderate/high (8%)
- Severity group (low vs. higher) did not differ by age group, gender, year of event, or work-related status (chi-square)
- Severity did differ by state (p=0.002) and case classification status (p<0.0001).
- Overall incidence rate significantly higher in Oregon (IRR 1.70, 95% CI 1.40-2.07)

- Most commonly reported AI were Type I pyrethroids (n=221, 41%)
- 2nd was pyrethrins (n=172, 32%)
- 3rd was Type II
 pyrethroids (n=141, 26%)
- Cases with moderate or high outcomes were more likely to be exposed to Type I pyrethroids than lower severity cases (Chisquare p=0.0117)



Permethrin (Type 1)

- Reported signs & symptoms
 - Respiratory (52%)
 - Neurological (40%)
 - GI (33%)
 - Ocular (30%)
 - Dermal (21%)
 - Cardiovascular (4%)
- Exposure routes
 - Inhalation (63%)
 - Dermal (37%)
 - Ocular (28%)
 - Ingestion (8%)

- Pre-existing conditions
 - Allergies (17%)
 - Asthma (15%)
 - MCS (4%)
 - Pregnancy (1%)
 - Significant association between presence of any of these conditions and higher illness severity (p=0.035)

- Non-occupational cases (n=293, 74%)
 - 46% occurred while mixing, applying, or otherwise handling pesticide
 - 49% were not handling pesticide
 - Most common equipment was "bug bomb"
 - Most exposures occurred at a residence

- Occupational cases (n=74, 26%)
 - 71% exposed during routine work that didn't involve handling pesticide
 - Most common equipment was bug bomb
 - Most exposures occurred at non-manufacturing facility, e.g. retail nursery or office building

- OR and WA overall had increasing rates of acute pesticide poisonings from pyrethrins and pyrethroids between 2001-2005
 - May be explained by phase out of chlorpyrifos (2001) and diazinon (2004) with replacement by pyrethrins/pyrethroids
 - Cannot be verified since neither state tracked pesticide sales/usage during time period
 - Study results match other investigators†

- Significant association between pre-existing conditions and case severity
 - Only limited data on PEC reported; data incomplete
 - Exacerbation of asthma†, death of child with asthma described in literature‡
- Association between Type I and higher severity cases
 - Usually Type II more toxic to mammals
 - Type II more potent neurotoxins—this may not be underlying cause of symptoms in our data (more skin, eye, respiratory)
 - More attention to inert ingredients or synergists is warranted

- Difference in proportion of moderate-high cases between OR and WA
 - May not mean WA has more severe cases
 - WA receives higher proportion of cases from health care providers
 - Oregon had decline in reports directly from clinicians over this time period
 - Suggests lack of knowledge that pesticide poisoning is a reportable condition

- Limitations of analysis
 - Likely under-reporting
 - Washington study found 60% of workers with pesticide-related diagnoses captured in system†
 - Exposures might be reported days or weeks after an incident
 - Some cases did not seek medical attention and would not enter surveillance system
 - Non-specific symptoms might have been coincidental (false positives)

†Washington State Department of Health. Available from URL: http://www.doh.wa.gov/ehp/oehas/publications_pdf/improvingdataqualitypesticideillnessssurveillance-2004.pdf

Conclusions

- Analysis shows scope and magnitude of acute illness associated with pyrethrin and pyrethroid insecticides in both Oregon and Washington
- Data underscore importance of statebased surveillance
 - Estimate magnitude of problem
 - Identify new or emerging issues
 - Identify risk factors and areas for intervention
 - Communicate research results

Acknowledgments

- Research supported by NIOSH cooperative agreement U60 OH008472 (Oregon)
- Full Author list:
 - Jaime K. Walters, MPH
 - Laura E. Boswell, BS
 - Mandy K. Green, MPH
 - Michael A. Heumann, MPH
 - Lauren E. Karam, MPH
 - Barbara F. Morrissey, MS (Washington DOH)
 - Justin E. Waltz, MPH
- Manuscript accepted for publication in Public Health Reports (later in 2008)

What are the trends in pyrethrin/pyrethroid usage and illness in your state?

What are your ideas for intervention? Label changes, point of sale education, applicator training?