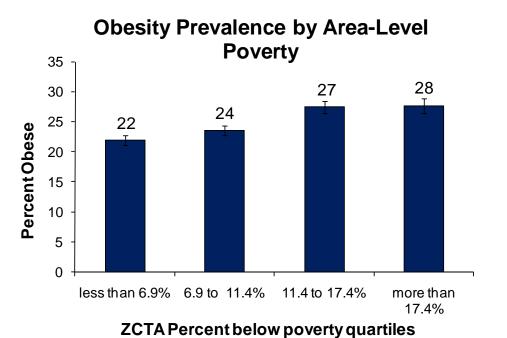


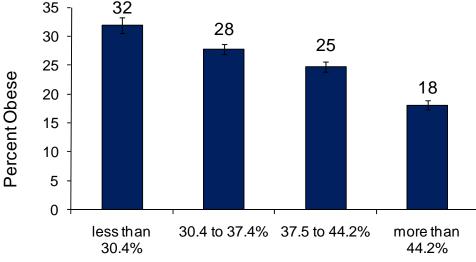
Socioeconomic Risk of Chronic Disease in Washington State a multilevel modeling approach

Dennis McDermot
Research Investigator
Chronic Disease Prevention Unit
WA Department of Health


Paula Braveman: Thoughts on Health Inequities

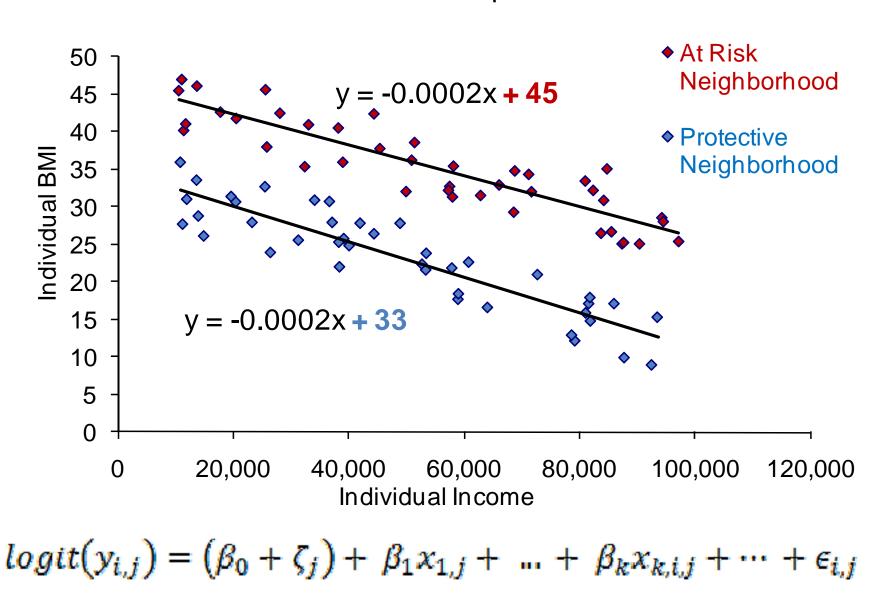
- Systematic differences in health or health determinants that are plausibly influenced by social policy are health inequities if they...
- a) Occur between groups with different social position place in the hierarchy according to power, wealth, prestige.
- b) Place groups already at social disadvantage at even greater disadvantage due to poor health.
- You do not need to attribute causation or prove that the disparity is avoidable if social policies were changed, as long as the impact is plausible.

Data Sources


- Behavioral Risk Factor Surveillance System (BRFSS) years 2005-2007
 - Self-reported health conditions and risk factors
 - Includes respondents' postal zip-code
- US Census Bureau Decennial Census year 2000
 - Socio-economic and demographic data by ZIP Code Tabulation Area (ZCTA)
 - American Community Survey provides more current information, but not by ZCTA
 - Note: ZCTA not quite the same as ZIP code

Simple Cross Tabulation – Obesity prevalence by income and wealth.

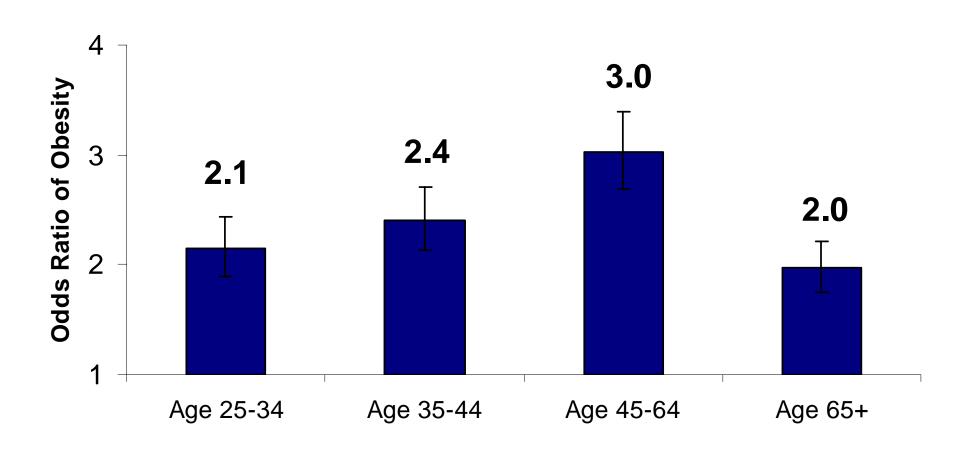
32 28


Obesity Prevalence by Area-Level Wealth

ZCTA Percent with income from rent, dividents, interest - quartiles

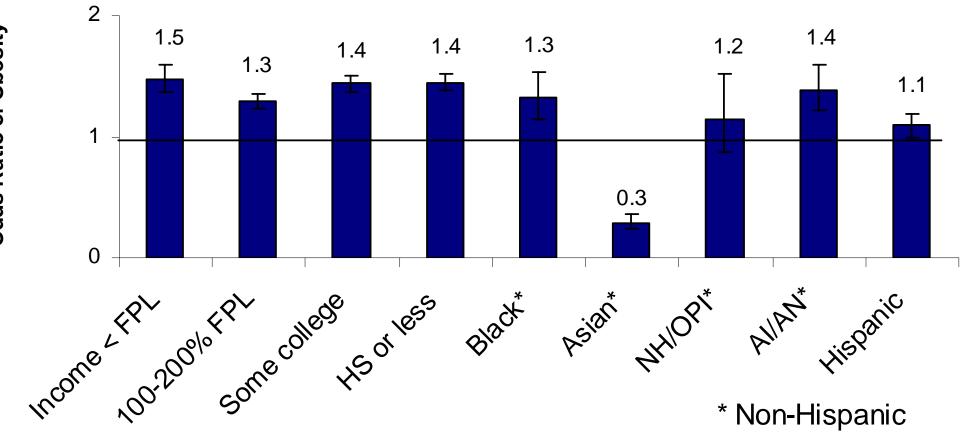
Random Intercept Model

Random Intercept Model



Individual Level Factors – BRFSS

- Age 5 categories
- Income as percent of federal poverty level
- Education
- Race / Ethnicity 6 groups


Individual level factors - BRFSS

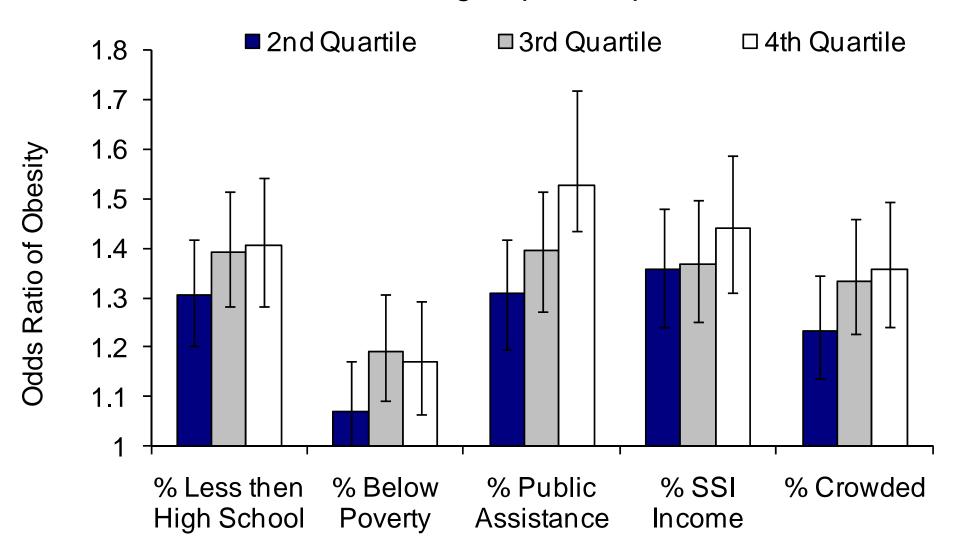
Odds Ratios of Obesity by Individual Ages (relative to age 18-24)

Individual level factors

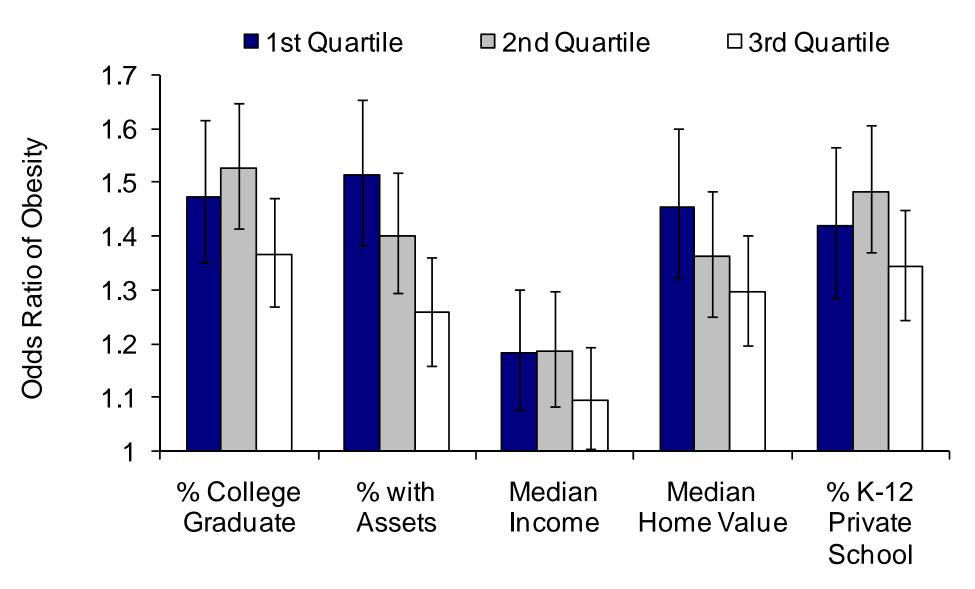
Odds Ratios of Obesity for Individual Sociodemographic Factors (relative to college graduate, white, non-Hispaninc, with income > 200% federal poverty level)

Area Based Factors - Census

All factors significant, P<.001

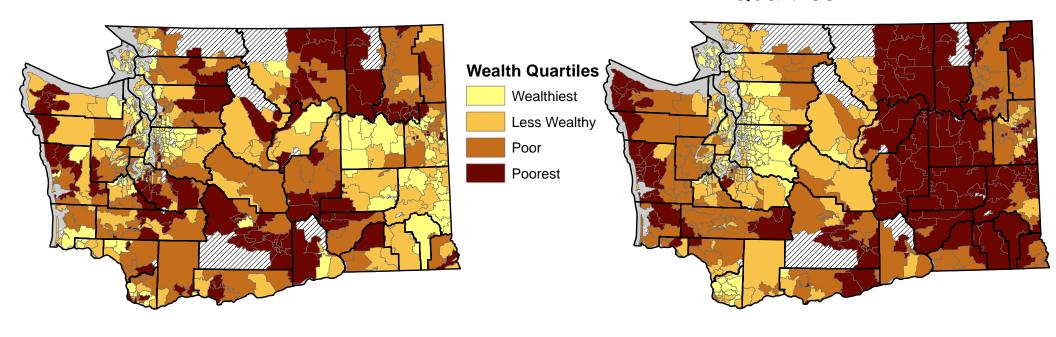

- Percent below federal poverty level
- Median household income
- Percent receiving public assistance
- Percent with supplemental security income
- Percent age 25+ with college degree
- Percent age 25+ with less than HS education
- Percent with assets income from rent, dividends, or interest
- Median home value
- Percent of K-12 age children in private school

More Area Based Factors


All factors significant, P<.05

- Percent of households with more than one person per room
- Percent age over 65 years
- Percent in at-risk race/ethnic group: Black, Hispanic, American Indian / Alaska Native; weak effect
- Percent rural; marginal, non-linear effect:

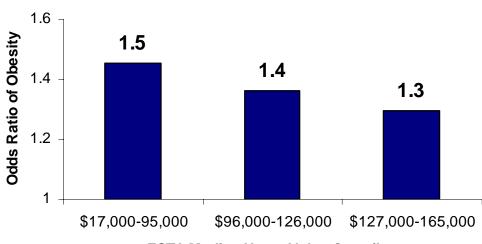
Odds Ratios Obesity - Area Level Socioeconomic Factors by Quartiles, After Controlling for Individual Level Effects - Reference group = 1st quartile



Odds Ratios of Obesity - Area Level Socioeconomic Factors by Quartiles After Controlling for Individual Level Effects - Reference group = 4th quartile

Percent w/ income from interest, rent, or dividends by ZCTA - Quartiles

Median Home Value by ZCTA - Quartiles



Odds of Obesity by ZCTA Percent with Assets - Relative to Top Quartile (45-83%)

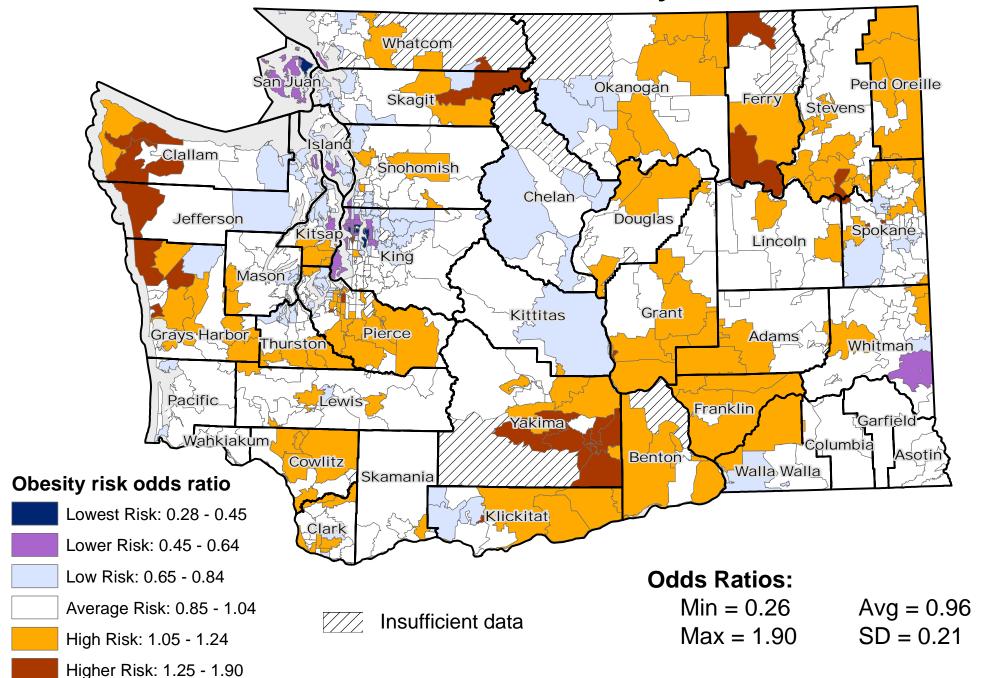
1.6 Joog Bay 1.4 Joog 1.4 Joog Bay 1.2 Joog

ZCTA Percent with Assets Quartiles

Odds of Obesity by ZCTA Median Home Value - Relative to Top Quartile (\$166,000-227,000)

ZCTA Median Home Value Quartiles

Area-Level Variable Selection


- Include at least one measure each related to income, wealth, and education
- Reduce correlation among factors as much as possible
- Linearity of effect for each factor
- All factors significant
- Best overall model fit based on likelihood ratio

Final Predictive Model

• Includes all individual level factors, plus:

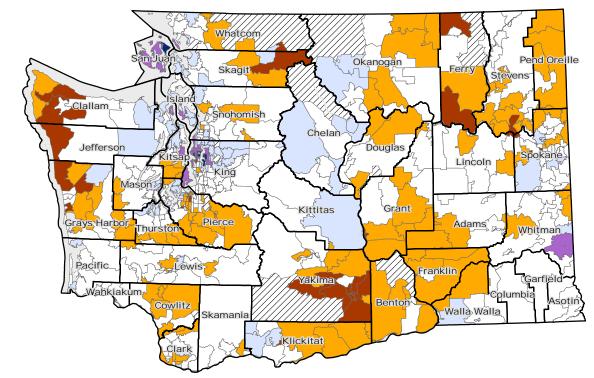
ZIP Code Level Factors	Coefficient (b)	Р	
% College Education	-0.00721	0.000	
Median Household Income	9.31E-06	0.000	
Median Home Value	-2.40E-06	0.000	
% Receiving Public Assistance	0.027226	0.001	
% Age 65+ above median value	-0.10541	0.004	
Intercept	-1.95176	0.000	

Socioeconomic Risk of Obesity in WA State

Socioeconomic Risk Of Obesity by ZCTA

Obesity risk odds ratio

Lowest Risk: 0.28 - 0.45


Lower Risk: 0.45 - 0.64

Low Risk: 0.65 - 0.84

Average Risk: 0.85 - 1.04

High Risk: 1.05 - 1.24

Higher Risk: 1.25 - 1.90

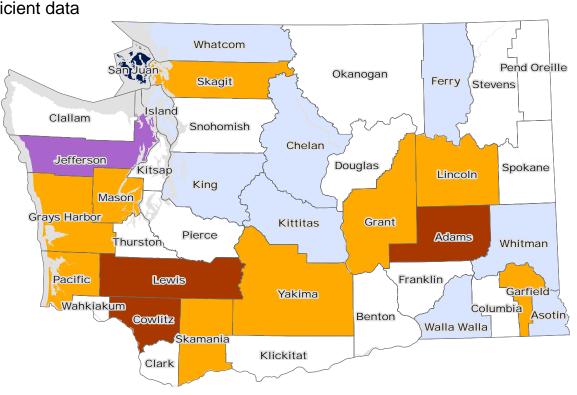
// Insufficient data

Obesity Prevalence

By County

Obesity Prevalence

13.7-14.6% (Less then -2.5 SD)


14.7 - 19.6% (-2.5 to -1.5 SD)

19.7 - 24.7% (-1.5 to -0.5 SD

24.7 - 29.8 % (Average)

29.9 - 34.8% (+0.5 to +1.5 SD)

34.9 - 38.1% (over +1.5 SD)

Diabetes and Smoking Models

(ZIP-Code Level Factors)

Diabetes	Coefficient (b)	Р
% College Education	-0.00552	0.011
Median Home Value	-1.40E-06	0.001
% Receiving Public Assistance	0.02942	0.000
Intercept	-2.701	0.000

Odds Ratios by ZIP Code:

Min = 0.28 Avg = 1.01 Max = 2.16 SD = 0.22

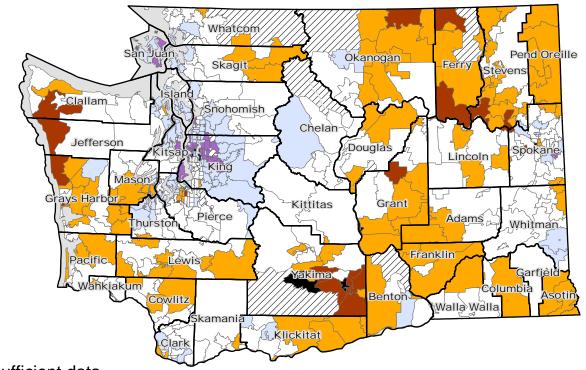
Note: For the diabetes model, individual age is treated as a continuous covariate.

Socioeconomic Risk of Diabetes by ZCTA

Diabetes Risk Odds Ratio

Lowest Risk: 0.27 - 0.47

Lower Risk: 0.48 - 0.68


Low Risk: 0.68 - 0.89

Average Risk: 0.90 - 1.10

High Risk: 1.11 - 1.30

Higher Risk: 1.31 - 1.51

Highest Risk: 1.52 - 2.16

// Insufficient data

Diabetes Prevalence By County

Diabetes Prevalence

2.9 - 3.0% (less than -2.5 SD)

3.0 - 4.7 % (-2.5 to -1.5 SD)

4.8 - 6.5 % (-1.5 to -0.5 SD)

6.5 - 8.2% (Average)

8.3 - 10.0 % (+0.5 to +1.5 SD)

10.1 - 12.3 % (More than +1.5 SD)

Diabetes and Smoking Models

(ZIP-Code Level Factors)

Smoking	Coefficient (b)	Р
% Less than HS Education	-0.01881	0.000
% With Assets	-0.02319	0.000
% Receiving Supplemental Security Income	0.02825	0.001
% Age 65+ (continuous)	0.01543	0.000
Intercept	-1.53127	0.000

Odds ratios by ZIP code:

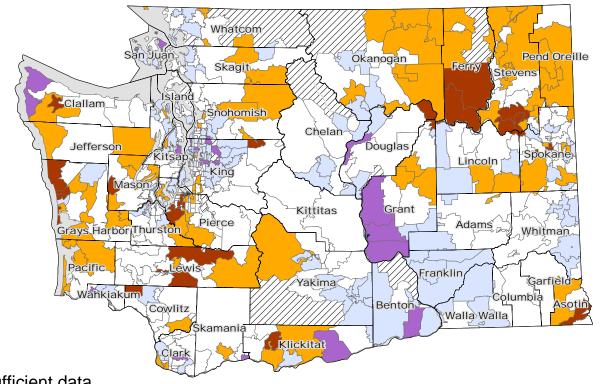
Min =
$$0.21$$
 Avg = 1.03 Max = 2.34 SD = 0.25

Note: Co-linearity reverses the sign of education effect for smoking.

Socioeconomic Risk of Smoking by ZCTA

Smoking Risk Odds Ratio

Lowest Risk: 0.20 - 0.44


Lower Risk: 0.45 - 0.67

Low Risk: 0.67 - 0.89

Average: 0.90 - 1.27

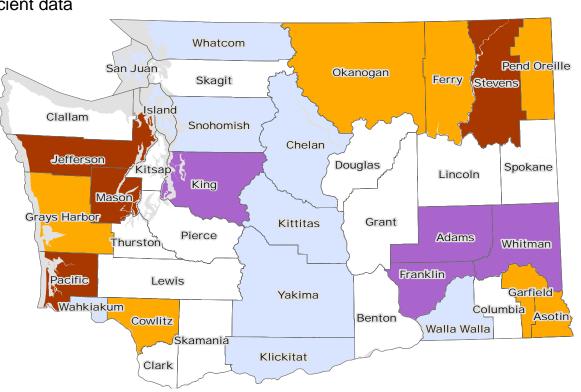
High Risk: 1.28 - 1.35

Higher RisK: 1.36 - 2.35

/// Insufficient data

Smoking Prevalence By County

Smoking Prevalence


11.0 - 12.0 % (below -1.5 SD)

12.1 - 16.5 % (-1.5 to -.5 SD)

16.6 - 21.0 % (Average)

21.1 - 25.5 % (+.5 to +1.5 SD)

25.5 - 27.7% (More than +1.5 SD)

Correlation among factors

ZIP-Code Level Factors

	College Grad	Less than HS	% Poverty		% with Assets	% Private school	% Public Assistance		Median Home Value
College Grad	1								1 4.40
Less than HS	-0.7224	1							
% Poverty	-0.3938	0.6111	1						
Median Income	0.5753	-0.5793	-0.8061	1					
% with Assets	0.7757	-0.6945	-0.5788	0.6084	1				
% Private school	0.6921	-0.4759	-0.288	0.3624	0.5334	1			
% Public Assistance	-0.6142	0.615	0.6789	-0.6502	-0.6851	-0.4061	1		
% SSI	-0.5323	0.5098	0.6232	-0.6439	-0.555	-0.3225	0.7514	1	
Median Home Value	0.7809	-0.5664	-0.4943	0.7188	0.6627	0.675	-0.5769	-0.5189	1

Statistical Model

$$logit(y_{i,j}) = (\beta_0 + \zeta_j) + \beta_1 x_{1,j} + \dots + \beta_k x_{k,i,j} + \dots + \epsilon_{i,j}$$

Where

```
y_{i,j} = Obesity status (binary) of individual i in zip code j x_{1,j} \dots x_{p,i,j} = individual and area level factors (\beta_0 + \zeta_j) = fixed baseline + random intercept in zip code j \epsilon_{i,j} = residual error
```

References

- Grubesic, T. H. and T. C. Matisziw 2006. On the use of ZIP code tabulation areas (ZCTA) for the spatial analysis of epidemiological data. *International Journal of Health Geographics*. **5:58**
- Wenjun, Li et.al. 2009. Small area estimation and prioritizing communities for obesity control in Massachusetts. *American Journal of Public Health*. **99:511-519**
- Drewnowski, A. C., D. Rehm, and D. Solet, 2007. Disparities in Obesity Rates: Analysis by ZIP code area. *Social Science & Medicine*. **65:2458-2463**.
- Merlo, J. et. al. 2004. A brief conceptual tutorial on multilevel analysis in social epidemiology: interpreting neighborhood differnces and the effect of neighborhood characteristics on individual health. *J Epidemiol Community Health*. **59:1022-1029**
- Rabe-Hesketh, S. and A. Skrondal. 2005. *Multilevel and Longitudinal Modeling Using Stata*. Stata Press, College Station TX.

For more information contact:

Dennis McDermot

dennis.mcdermot@doh.wa.gov (360) 236-3791

